If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-10y-2=0
a = 5; b = -10; c = -2;
Δ = b2-4ac
Δ = -102-4·5·(-2)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{35}}{2*5}=\frac{10-2\sqrt{35}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{35}}{2*5}=\frac{10+2\sqrt{35}}{10} $
| 6-2(6x+1)=2x-2(2x+8) | | N+384=-7n+8 | | 11/2-3/4p=1/2+6 | | x3–3x^2+8x=24 | | 6x-7=4x+30 | | x3–3x2+8x=24 | | A+114=-4a+9 | | 132=-6(1-3r) | | 2x-4(x-5)=-4+3x-11 | | 1/2(8y+2)+1/2(8y-4)=15 | | 5d-3=12 | | 8(-n-8)-7=-135 | | 6f+12=13 | | 10g+7=87 | | 4.3+1.1n=1.55 | | -2(1+7v)=-86 | | 11d+18=62 | | Y+3x=8;x=-2,0,2 | | -y^2+8y=1 | | 9+(8+9)=2a | | y^2+8y=1 | | 4(x-3)-3=6(x-4) | | Y=7-32x | | 135=2(1-6n)-7n | | 2(30)+5y=6 | | 8r+12=76 | | -8/3k-6/5=-4+6/7k | | 7m+14=35 | | 6.5+1.4n=3.42 | | -4(7x-4)=100 | | 6x+20+x+4x=180 | | 5b+7=32 |